public class StaTools extends Object
Constructor and Description |
---|
StaTools() |
Modifier and Type | Method and Description |
---|---|
static double |
generalisedMean(double[] data,
double p)
Computes the generalized mean, which is a general version of mean and quadratic mean, generalized by parameter p.
|
static double |
geometricMean(double[] data)
Computes the geometric mean.
|
static double |
harmonicMean(double[] data)
Computes the harmonic mean.
|
static double |
max(double[] a)
Return the max of the specified array
|
static double |
max(double[] a,
int offset,
int length)
Return the max of the specified array
|
static float |
max(float[] a)
Return the max of the specified array
|
static int |
max(int[] a)
Return the max of the specified array
|
static double |
mean(double[] data)
The mean of an array of double values.
|
static double |
mean(double[] data,
int start,
int length,
boolean ascending)
The mean of a sub-array of an array of double values.
|
static float |
mean(float[] data)
find mean of float[]
|
static double |
mean(int[] data)
The mean of an array of integers.
|
static double |
meanNonZero(double[] data)
The mean of an array of doubles, only counting non-zero
values.
|
static double |
median(double[] data)
The median of an array of double values.
|
static double |
min(double[] a)
Return the min of the specified array
|
static float |
min(float[] a)
Return the min of the specified array
|
static int |
min(int[] a)
Return the min of the specified array
|
static double |
quadraticMean(double[] data)
Computes the quadratic mean, also known as the root mean square.
|
static double |
standardDeviation(double[] data)
The standard deviation of an array of double values.
|
static double[] |
standardNormalisation(double[] data)
Normalises the data in the specified array to be in range [0,1], with
0 as the minimum, and 1 as the maximum.
|
static float[] |
standardNormalisation(float[] data)
Normalises the data in the specified array to be in range [0,1], with
0 as the minimum, and 1 as the maximum.
|
static double |
stdErrorOfTheMean(double[] data)
This method returns the standard error of the mean for an array of data.
|
static double |
stirlingPower(double n,
double m)
This method provides the contract for implementing the Stirling formula for the power series.
|
static double |
sum(double[] data)
The sum of an array of double.
|
static int |
sum(int[] data)
The sum of an array of integers.
|
static double |
variance(double[] data)
The variance of an array of double values.
|
public static double stirlingPower(double n, double m)
n
- The parameter of the Stirling formula.m
- The parameter of the Stirling formula.public static double stdErrorOfTheMean(double[] data)
data
- The sampled data.public static final int max(int[] a)
a
- the arraypublic static final double max(double[] a)
a
- the arraypublic static final double max(double[] a, int offset, int length)
a
- the arrayoffset
- the offset in the array to start examining fromlength
- how many items of the array to considerpublic static final double min(double[] a)
a
- the arraypublic static final int min(int[] a)
a
- the arraypublic static int sum(int[] data)
data
- The integers.public static double sum(double[] data)
data
- The integers.public static double mean(double[] data)
data
- The double values.public static float mean(float[] data)
data
- public static double mean(double[] data, int start, int length, boolean ascending)
data
- The array of double values.start
- The starting index of the sub-array.length
- The length of the sub-array.ascending
- Is the starting index the left (true) or
right (false) end of the sub-array?public static double mean(int[] data)
data
- The array of integers.public static double meanNonZero(double[] data)
data
- The array of integers.public static double median(double[] data)
data
- The array of double values.public static double standardDeviation(double[] data)
data
- The array of double values.public static double variance(double[] data)
data
- The array of double values.public static double harmonicMean(double[] data)
public static double geometricMean(double[] data)
public static double quadraticMean(double[] data)
public static double generalisedMean(double[] data, double p)
public static double[] standardNormalisation(double[] data)
data
- public static float[] standardNormalisation(float[] data)
data
- public static final float min(float[] a)
a
- the arraypublic static final float max(float[] a)
a
- the arrayTerrier 4.0. Copyright © 2004-2014 University of Glasgow