Package | Description |
---|---|
org.terrier.matching.models |
Provides the classes that implement various weighting models.
|
org.terrier.matching.models.normalisation |
Provides the interface and the classes for implementing the basic models for randomness
in the DFR framework.
|
Modifier and Type | Field and Description |
---|---|
protected Normalisation[] |
PerFieldNormWeightingModel.fieldNormalisations |
protected Normalisation |
DFRWeightingModel.normalisation
The applied frequency normalisation method.
|
Constructor and Description |
---|
PerFieldNormWeightingModel(Class<? extends BasicModel> _basicModel,
Class<? extends Normalisation> _normalisationModel)
Constructs an instance of PerFieldNormWeightingModel
|
Modifier and Type | Class and Description |
---|---|
class |
Normalisation0
This class implements an empty normalisation.
|
class |
Normalisation1
This class implements the DFR normalisation 1, which is identical to DFR
normalisation 2 with c=1.0
|
class |
Normalisation2
This class implements the DFR normalisation 2.
|
class |
Normalisation2exp
This class implements the DFR normalisation 2 with natural logorithm.
|
class |
Normalisation3
This class implements the Dirichlet Priors normalisation.
|
class |
NormalisationB
This class implements BM25's normalisation method.
|
class |
NormalisationF
This class implements an increasing density function for the frequency normalisation.
|
class |
NormalisationJ
This class implements the tf normalisation based on Jelinek-Mercer smoothing for language modelling.
|
class |
NormalisationJN
This class implements the tf normalisation based on Jelinek-Mercer smoothing
for language modelling where collection model is given by document frequency
instead of term frequency.
|
class |
NormalisationP
This class implements Term Frequency Normalisation via
Pareto Distributions
|
class |
NormalisationStatic
This class implements a Normalisation method that forces all
term frequencies to the value of the parameter.
|
Modifier and Type | Method and Description |
---|---|
Normalisation |
Normalisation.clone()
Clone this weighting model
|
Terrier 4.0. Copyright © 2004-2014 University of Glasgow