| Package | Description | 
|---|---|
| org.terrier.matching.models | 
 Provides the classes that implement various weighting models. 
 | 
| org.terrier.matching.models.normalisation | 
 Provides the interface and the classes for implementing the basic models for randomness
in the DFR framework. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Normalisation[] | 
PerFieldNormWeightingModel.fieldNormalisations  | 
protected Normalisation | 
DFRWeightingModel.normalisation
The applied frequency normalisation method. 
 | 
| Constructor and Description | 
|---|
PerFieldNormWeightingModel(Class<? extends BasicModel> _basicModel,
                          Class<? extends Normalisation> _normalisationModel)
Constructs an instance of PerFieldNormWeightingModel 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
Normalisation0
This class implements an empty normalisation. 
 | 
class  | 
Normalisation1
This class implements the DFR normalisation 1, which is identical to DFR
 normalisation 2 with c=1.0 
 | 
class  | 
Normalisation2
This class implements the DFR normalisation 2. 
 | 
class  | 
Normalisation2exp
This class implements the DFR normalisation 2 with natural logorithm. 
 | 
class  | 
Normalisation3
This class implements the Dirichlet Priors normalisation. 
 | 
class  | 
NormalisationB
This class implements BM25's normalisation method. 
 | 
class  | 
NormalisationF
This class implements an increasing density function for the frequency normalisation. 
 | 
class  | 
NormalisationJ
This class implements the tf normalisation based on Jelinek-Mercer smoothing for language modelling. 
 | 
class  | 
NormalisationJN
This class implements the tf normalisation based on Jelinek-Mercer smoothing 
 for language modelling where collection model is given by document frequency
 instead of term frequency. 
 | 
class  | 
NormalisationP
This class implements Term Frequency Normalisation via 
 Pareto Distributions 
 | 
class  | 
NormalisationStatic
This class implements a Normalisation method that forces all
 term frequencies to the value of the parameter. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Normalisation | 
Normalisation.clone()
Clone this weighting model 
 | 
Terrier 4.0. Copyright © 2004-2014 University of Glasgow