public abstract class StaticScoreModifierWeightingModel extends WeightingModel
ObjectOutputStream file of float[] or double[] arrayTIntDoubleHashMap saved in an ObjectOutputStream fileaverageDocumentLength, c, cs, documentFrequency, es, i, keyFrequency, numberOfDocuments, numberOfPointers, numberOfTokens, numberOfUniqueTerms, rq, termFrequency| Modifier and Type | Method and Description |
|---|---|
protected static double[] |
castToDoubleArr(float[] f) |
protected static double[] |
castToDoubleArr(short[] f) |
protected static float[] |
castToFloatArr(double[] f) |
protected static float[] |
castToFloatArr(short[] f) |
String |
getInfo()
Returns the name of the model.
|
double |
getScoreD(int docid) |
float |
getScoreF(int docid) |
String |
getSource() |
protected void |
loadDocid2score(int numDocs,
String inputFile,
int column) |
protected void |
loadfloatOOS(String inputFile) |
protected void |
loadOOS(String inputFile) |
protected void |
loadScorefile(int numDocs,
String inputFile,
int column) |
static float |
max(float[] a)
Return the max of the specified array
|
static float |
min(float[] a)
Return the min of the specified array
|
protected static void |
printStats(double[] ar) |
double |
score(double tf,
double docLength)
This method provides the contract for implementing weighting models.
|
double |
score(double tf,
double docLength,
double n_t,
double F_t,
double _keyFrequency)
This method provides the contract for implementing weighting models.
|
abstract double |
score(Posting p)
Returns score
|
static float[] |
standardNormalisation(float[] data)
Normalises the data in the specified array to be in range [0,1], with
0 as the minimum, and 1 as the maximum.
|
clone, getOverflowed, getParameter, prepare, setCollectionStatistics, setEntryStatistics, setKeyFrequency, setParameter, setRequestpublic final double getScoreD(int docid)
public final float getScoreF(int docid)
public final String getSource()
public abstract double score(Posting p)
WeightingModelscore in class WeightingModelpublic String getInfo()
WeightingModelgetInfo in interface ModelgetInfo in class WeightingModelpublic double score(double tf,
double docLength)
WeightingModelscore in class WeightingModeltf - The term frequency in the documentdocLength - the document's lengthpublic double score(double tf,
double docLength,
double n_t,
double F_t,
double _keyFrequency)
WeightingModelscore in class WeightingModeltf - The term frequency in the documentdocLength - the document's lengthn_t - The document frequency of the termF_t - the term frequency in the collection_keyFrequency - the term frequency in the queryprotected void loadDocid2score(int numDocs,
String inputFile,
int column)
protected void loadScorefile(int numDocs,
String inputFile,
int column)
protected void loadOOS(String inputFile)
protected void loadfloatOOS(String inputFile)
protected static void printStats(double[] ar)
protected static double[] castToDoubleArr(float[] f)
protected static double[] castToDoubleArr(short[] f)
protected static float[] castToFloatArr(double[] f)
protected static float[] castToFloatArr(short[] f)
public static float[] standardNormalisation(float[] data)
data - public static final float min(float[] a)
a - the arraypublic static final float max(float[] a)
a - the arrayTerrier 4.0. Copyright © 2004-2014 University of Glasgow