org.terrier.matching.models.normalisation
Class NormalisationJ

java.lang.Object
  extended by org.terrier.matching.models.normalisation.Normalisation
      extended by org.terrier.matching.models.normalisation.NormalisationJ
All Implemented Interfaces:
java.io.Serializable

public class NormalisationJ
extends Normalisation

This class implements the tf normalisation based on Jelinek-Mercer smoothing for language modelling.

Author:
Ben He
See Also:
Serialized Form

Field Summary
protected  java.lang.String methodName
          The name of the normalisation method .
 
Fields inherited from class org.terrier.matching.models.normalisation.Normalisation
averageDocumentLength, idf, Nt, numberOfDocuments, numberOfTokens, parameter, termFrequency
 
Constructor Summary
NormalisationJ()
           
 
Method Summary
 java.lang.String getInfo()
          Get the name of the normalisation method.
 double normalise(double tf, double docLength, double termFrequency)
          This method gets the normalised term frequency.
 
Methods inherited from class org.terrier.matching.models.normalisation.Normalisation
getParameter, setAverageDocumentLength, setDocumentFrequency, setNumberOfDocuments, setNumberOfTokens, setParameter
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

methodName

protected final java.lang.String methodName
The name of the normalisation method .

See Also:
Constant Field Values
Constructor Detail

NormalisationJ

public NormalisationJ()
Method Detail

getInfo

public java.lang.String getInfo()
Get the name of the normalisation method.

Specified by:
getInfo in class Normalisation
Returns:
Return the name of the normalisation method.

normalise

public double normalise(double tf,
                        double docLength,
                        double termFrequency)
This method gets the normalised term frequency.

Specified by:
normalise in class Normalisation
Parameters:
tf - The frequency of the query term in the document.
docLength - The number of tokens in the document.
termFrequency - The frequency of the query term in the collection.
Returns:
The normalised term frequency.


Terrier 3.5. Copyright © 2004-2011 University of Glasgow