Uses of Class
org.terrier.matching.models.basicmodel.BasicModel

Packages that use BasicModel
org.terrier.matching.models Provides the classes that implement various weighting models. 
org.terrier.matching.models.basicmodel Provides the interface and the classes for implementing the basic models for randomness in the DFR framework. 
 

Uses of BasicModel in org.terrier.matching.models
 

Fields in org.terrier.matching.models declared as BasicModel
protected  BasicModel DFRWeightingModel.basicModel
          The applied basic model for randomness.
 

Constructor parameters in org.terrier.matching.models with type arguments of type BasicModel
PerFieldNormWeightingModel(java.lang.Class<? extends BasicModel> _basicModel, java.lang.Class<? extends Normalisation> _normalisationModel)
          Constructs an instance of PerFieldNormWeightingModel
 

Uses of BasicModel in org.terrier.matching.models.basicmodel
 

Subclasses of BasicModel in org.terrier.matching.models.basicmodel
 class B
          This class implements the B basic model for randomness.
 class BM
          This class implements the BM weighting model, which generates the original weight given by the BM25 formula, without frequency normalisation and query term weighting.
 class Br
          This class implements the Bernoulli model of randomness
 class DFR_BM
          This class implements the DFR BM weighting model, which is an approximation of BM25 in the DFR framework.
 class IF
          This class implements the IF basic model for randomness.
 class In
          This class implements the In basic model for randomness.
 class In_exp
          This class implements the In_exp basic model for randomness.
 class P
          This class implements the P basic model for randomness.
 class PL
          This class implements the PL weighting model.
 



Terrier 3.5. Copyright © 2004-2011 University of Glasgow