Package org.terrier.statistics
Class GammaFunction
- java.lang.Object
-
- org.terrier.statistics.GammaFunction
-
- All Implemented Interfaces:
java.io.Serializable
public abstract class GammaFunction extends java.lang.Object implements java.io.SerializableBase class for implementations of the Gamma function. Use getGammaFunction() to obtain an instance. The exact instance can be controlled by property gamma.function For consistency when computing logarithms of the gamma function, all implementations assume positive input values. In practice, as the gamma function can generate large values, normal usage should use compute_log() anyway.Properties:
- gamma.function - class name of the Gamma function implementation.
- Since:
- 3.0
- Author:
- Craig Macdonald
- See Also:
- Serialized Form
-
-
Constructor Summary
Constructors Constructor Description GammaFunction()
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description abstract doublecompute(double number)Get the value of the gamma function for the specified number.abstract doublecompute_log(double number)Get the value of the log of gamma function for the specified number.static longfactorial(long n)Compute factorial of n, for 0 < n < 21.static GammaFunctiongetGammaFunction()Obtain an instance of GammaFunctionstatic voidmain(java.lang.String[] args)
-
-
-
Method Detail
-
compute
public abstract double compute(double number)
Get the value of the gamma function for the specified number.- Parameters:
number- for which is required- Returns:
- (n-1)!
-
compute_log
public abstract double compute_log(double number)
Get the value of the log of gamma function for the specified number.- Parameters:
number- for which is required- Returns:
- log(n-1)!
-
getGammaFunction
public static final GammaFunction getGammaFunction()
Obtain an instance of GammaFunction
-
main
public static void main(java.lang.String[] args)
-
factorial
public static final long factorial(long n)
Compute factorial of n, for 0 < n < 21.- Parameters:
n- number to compute for- Returns:
- factorial of n
-
-