Package org.terrier.matching.models
Class LemurTF_IDF
- java.lang.Object
-
- org.terrier.matching.models.WeightingModel
-
- org.terrier.matching.models.LemurTF_IDF
-
- All Implemented Interfaces:
java.io.Serializable
,java.lang.Cloneable
,Model
public class LemurTF_IDF extends WeightingModel
This class implements the TF_IDF weighting model as it is implemented in Lemur. See Notes on the Lemur TFIDF model. Chenxiang Zhai, 2001.- Author:
- Ben He, Gianni Amati, Vassilis Plachouras
- See Also:
- Serialized Form
-
-
Field Summary
-
Fields inherited from class org.terrier.matching.models.WeightingModel
averageDocumentLength, c, cs, documentFrequency, es, i, keyFrequency, numberOfDocuments, numberOfPointers, numberOfPostings, numberOfTokens, numberOfUniqueTerms, rq, termFrequency
-
-
Constructor Summary
Constructors Constructor Description LemurTF_IDF()
A default constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description java.lang.String
getInfo()
Returns the name of the model.double
score(double tf, double docLength)
Uses LemurTF_IDF to compute a weight for a term in a document.-
Methods inherited from class org.terrier.matching.models.WeightingModel
clone, getOverflowed, getParameter, prepare, score, setCollectionStatistics, setEntryStatistics, setKeyFrequency, setParameter, setRequest
-
-
-
-
Method Detail
-
getInfo
public final java.lang.String getInfo()
Returns the name of the model.- Specified by:
getInfo
in interfaceModel
- Specified by:
getInfo
in classWeightingModel
- Returns:
- the name of the model
-
score
public final double score(double tf, double docLength)
Uses LemurTF_IDF to compute a weight for a term in a document.- Specified by:
score
in classWeightingModel
- Parameters:
tf
- The term frequency in the documentdocLength
- the document's length- Returns:
- the score assigned to a document with the given tf and docLength, and other preset parameters
-
-